An approach towards development of a migration enabled improved datacenter broker policy

  • Debashis Das University of Kalyani
  • Sourav Banerjee University of Kalyani
  • Ayan Kundu University of Kalyani
  • Swagata Chandra University of Kalyani
  • Saptarshi Pal University of Kalyani
  • Utpal Biswas University of Kalyani
Keywords: allocation policy, load balancing, makespan, migration enabled cloudlet allocation policy, quality of service


Cloud computinghas left its remarkable note on the computing world over the last few years. Through its
effectiveness, litheness, scalability & availability cloud computinghas changed the nature of computer system
deployment. The Quality of Service (QoS) of a cloud service provider (CSP) is an important element of research interest
which includes different critical issues such as proper load, minimization of waiting time, turnaround time, makespan
and suppressing the wastage of bandwidth of the system. The Datacenter Broker (DCB) policy helpsassigning a
cloudletto a VM. In present study, we proposed an algorithm, i.e., Migration enabled Cloudlet Allocation Policy
(MCAP) for allocation of cloudlets to the VMs in a Datacenter by taking into accounttheload capacity of VMs and
length of the cloudlets. The experimental results obtained using CloudSim toolkit under extensive loads that establish
performance supremacy of MCAP algorithm over the existing algorithms.


[1]. Sosinsky B. Cloud Computing Bible, 1st ed., Indianapolis, Indiana: Wiley Publishing, Inc. 2011: ch.1,4,5: 1-18,
58-68, 73-77.
[2]. Calheiros R N, Ranjan R, Cesar A, Rose F D, Buyya R. CloudSim: A Novel Framework for modelling and
Simulation of Cloud Computing Infrastructures and Services. 2009.
[3]. Pallis G. Cloud Computing: The New Frontier of Internet Computing. Internet Computing. IEEE. 2010: 14(5),
70-73. doi: 10.1109/MIC.2010.113.
[4]. Zhang Q, Cheng L, Boutaba R. Cloud Computing: State-Of-The-Art and Research Challenges. J Internet Serv
Appl. The Brazilian Computer Society. 2010. 7-18. doi: 10.1007/s13174-010-0007-6.
[5]. Dikaiakos M D, Pallis G, Katsa D, Mehra P, Vakali A. Cloud Computing: Distributed Internet Computing for IT
and Scientific Research. Internet Computing, IEEE. 2009: 13(5):10-13. doi: 10.1109/MIC.2009.103.
[6]. Sahoo J, Mohapatra S, Lath R.Virtualization: A Survey on Concepts, Taxonomy and Associated Security
Issues.Computer and Network Technology (ICCNT). Second International Conference on. 2010: 222-226, 23-25.
doi: 10.1109/ICCNT.2010.49.
[7]. Parsa S, Entezari-Maleki R. RASA: A New Task Scheduling Algorithm in Grid Environment. World Applied
Sciences Journal 7 (Special Issue of Computer & IT). IDOSI Publications. 2009: 152-160. ISSN: 1818.4952.
[8]. Alwabel A, Walters R, Wills G. Desktop CloudSim: Simulation of Node Failures in the cloud. in Proceedings of
The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization. IARIA. 2015: 14-19. ISBN:
[9]. Buyya R, Calheiros R N, Grozev N. cloudsim 3.0 2015. [Online]. Available at:
[10].Buyya R, Calheiros R N, Grozev N. The CLOUDS Lab: Flagship Projects-Gridbus and Cloudbus.
2015. [Online]. Available at:
[11].Panchal B, Prof Kapoor R K. Dynamic VM Allocation using Clustering in Cloud Computing. International
Journal of Advanced Research in Computer Science and Software Engineering. 2013. 3: 143-150.
[12].Casanova H. Simgrid: A toolkit for the simulation of application scheduling, Cluster Computing and the Grid.
Proceedings. First IEEE/ACM International Symposium on. 2001:430-437.doi: 10.1109/CCGRID.2001.923223.
[13].Ostermann S, Plankensteiner K, Prodan R, Fahringer T. GroudSim: An event-based simulation framework for
computational grids and clouds. Euro-Par 2010 Parallel Processing.Workshops. No. 261585. 2011: 305-313.
[14].Kaur P, Prof Dr. Kaur P D. Efficient and Enhanced Load Balancing Algorithms in Cloud Computing. International
Journal of Grid Distribution Computing. SERSC. 2015. 8(2): 9-14.ISSN: 2005-4262 IJGDC.
[15].Marc B, Leser U. Dynamiccloudsim: Simulating Heterogeneity in Computational Clouds. Future Generation
Computer Systems. 2015: 1-22.
[16].Randles M, Lamb D, Taleb-Bendiab A. A comparative study into distributed loadbalancing algorithms for cloud
computing. 2010 IEEE 24thinternational conference on advancedinformationnetworking and application
workshops. 2010:551-556, 20-23. doi: 10.1109/WAINA. 2010.85.
[17].Somani R, Ojha J. A Hybrid Approach for VM Load Balancing in Cloud Using CloudSim. International Journal
of Science. Engineering and Technology Research (IJSETR).2014. Vol.3(6): 1734-1739. ISSN: 2278-7798.
[18].Chatterjee T, Ojha V K, Adhikari M, Banerjee S, Biswas U. (2014) VáclavSnášel, Design and Implementation of
an Improved Datacenter Broker Policy to Improve the QoS of a Cloud. in Proceedings of the Fifth Intern. Conf.
on Innov. In Bio-Inspired Comput. AndAppl, Springer International Publishing Switzerland. IBICA 2014. 2014:
281-290. doi: 10.1007/978-3-319-08156-4_28.
[19].Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and
performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurrency Computat.
Pract. Exper. John Wiley & Sons Ltd. 2011. 24(13): 1397-1420.doi: 10.1002/cpe.1867.
[20].Chaisiri S, Lee B, Niyato D. Optimization of Resource Provisioning Cost in Cloud Computing. IEEE Trans. Serv.
Comput. IEEE. 2012; 5(2):164-177. doi: 10.1109/TSC.2011.7.
[21].Feng G, Garg S, Buyya R, Li W. Revenue Maximization Using Adaptive Resource Provisioning in Cloud
Computing Environments. 2012 ACM/IEEE 13th International Conference on Grid Computing. IEEE. 2012: 192-
200.doi: 10.1109/Grid. 2012.16.
[22].Javadi B, Thulasiraman P, Buyya R. Cloud Resource Provisioning to Extend the Capacity of Local Resources in
the Presence of Failures. IEEE 14th International Conference on High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems. IEEE. 2012:
311-319.doi: 10.1109/HPCC.2012.49.
[23].Yu H, Lan Y, Zhang X, Liu Z, Yin C, Li L. Job Scheduling Algorithm in Cloud Environment. International
Conference on Computational and Information Sciences. IEEE. 2013: 1652-1655. doi: 10.1109/ICCIS.2013.432.
[24].Calheiros R N, Ranjan R, Beloglazov A, Rose C D, Buyya R. (2010) CloudSim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience. John Wiley & Sons Ltd. 2010. 41(1): 23-50. doi: 10.1002/spe.995.
[25].Li K, Xu G, Zhao G, Dong Y, Wang D. Cloud Task Scheduling Based on Load Balancing Ant Colony
Optimization. Sixth Annual Chinagrid Conference. IEEE. 2011: 3-9.doi: 10.1109/ChinaGrid.2011.17.
[26].Ru J, Keung J. (2013) An Empirical Investigation on the Simulation of Priority and Shortest-Cloudlet-First
Scheduling for Cloud-Based Software Systems. 2013 22nd Australian Software Engineering Conference. IEEE:
78-87, doi: 10.1109/ASWEC.2013.19.
[27].Wickremasinghe B, Calheiros R N, Buyya R. CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing
Cloud Computing Environments and Applications. Advanced Information Networking and Applications (AINA).
2010 24th IEEE International Conference on. 2010: 446-452, 20-23. doi: 10.1109/AINA.2010.32.
[28].Katyal M, Mishra A. Application of Selective Algorithm for Effective Resource Provisioning in Cloud Computing
Environment. IJCCSA. 2014. 4(1): 1-10. doi: 10.5121/ijccsa.2014.4101.
[29].Buyya R, Ranjan R, Calheiros R N. Modeling and simulation of scalable cloud computing environments and the
CloudSim toolkit: challenges and opportunities. In: Proceedings of the 7th High Performance Computing and
Simulation Conference. (HPCS 2009. ISBN: 978-1-4244-4907-1. IEEE Press. New York, USA). Leipzig,
Germany. 2009.
[30].Forouzan B A. Data Communications and Networking. 3rd Ed. New Delhi: Tata McGraw-Hill. 2004: 497-560.
[31].Martino B D, Esposito A, Nacchia S.Comput Sci Res Dev A semantic model for business process patterns to
support cloud deployment. Springer Berlin Heidelberg. 2017. 32(3–4): 257–267.
[32].Oberg M, Woitaszek M, Voran T, Tufo H M. A system architecture supporting high-performance and cloud
computing in an academic consortium environment. Computer Science - Research and Development. SpringerVerlag. 2011; 26(3-4): 317-324, doi:10.1007/s00450-011-0172-2.