Implementation of the Naive Bayes Algorithm to Predict the Safety of Heart Failure Patients

Authors

  • Okky Putra Barus Universitas Pelita Harapan
  • Kevil Lauwren Pelita Harapan University
  • Jefri Junifer Pangaribuan Pelita Harapan University
  • Romindo Pelita Harapan University

DOI:

https://doi.org/10.34306/conferenceseries.v4i1.651

Keywords:

Data Mining, Heart Failure, Naive Bayes

Abstract

Heart disease stands as a prominent contributor to global mortality, as indicated by data released by the World Health Organization (WHO). In 2019 alone, an estimated 17.9 million individuals succumbed to cardiovascular disease, accounting for 32% of all worldwide deaths. Of these fatalities, 85% were attributed to heart disease and stroke. Individuals harboring the potential for heart failure often persist in unhealthy lifestyles, regardless of their awareness of underlying heart conditions. To address this issue, the research explores the application of machine learning to identify an optimal method for classifying heart failure patients, employing the Naive Bayes technique. This algorithm has found extensive use in the health sector, demonstrating success in classifying various conditions such as hepatitis, stroke, respiratory infections, and more. The Naive Bayes algorithm, applied in this study, exhibited notable accuracy, precision, sensitivity, and overall classification efficacy. Specifically, the classification accuracy for heart failure patients reached 74.58%, the precision level was 97.67%, sensitivity achieved 75%, and the AUC (Area Under ROC Curve) stood at 0.857, indicating excellent classification within the 0.80 to 0.90 range. These findings can serve as an early warning system for individuals at risk of heart failure.

References

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

T. Hariguna, B. Bin Madon, and U. Rahardja, “User’intention to adopt blockchain certificate authentication technology towards education,” in AIP Conference Proceedings, AIP Publishing, 2023.

O. P. Barus and N. Surantha, “The Classification Of Arrhythmia Using The Method Of Extreme Learning Machine,” ICIC Express Letters, vol. 14, no. 12, pp. 1147–1154, Dec. 2020, doi: 10.24507/icicel.14.12.1147.

A. Dudhat, “Application of Information Technology to Education in the Age of the Fourth Industrial Revolution,” Int. Trans. Educ. Technol., vol. 1, no. 2, pp. 131–137, 2023.

Kementerian Kesehatan, “Penyakit Jantung Penyebab Utama Kematian, Kemenkes Perkuat Layanan Primer.” Accessed: Nov. 29, 2023. [Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20220929/0541166/penyakit-jantung-penyebab-utama-kematian-kemenkes-perkuat-layanan-primer/

S. D. Sugiyanti, R. Widayanti, M. B. Ulum, G. Firmansyah, and A. H. Azizah, “Design Dashboard Monitoring Teacher Performance Assessment at Cinta Kasih Tzu Chi High School,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 46–56, 2022.

M. Zhang et al., “A parsimonious approach for screening moderate-to-profound hearing loss in a community-dwelling geriatric population based on a decision tree analysis,” BMC Geriatr, vol. 19, no. 1, Aug. 2019, doi: 10.1186/s12877-019-1232-x.

A. Hermawan, W. Sunaryo, and S. Hardhienata, “Optimal Solution for OCB Improvement Through Strengthening of Servant Leadership, Creativity, and Empowerment,” Aptisi Trans. Technopreneursh., vol. 5, no. 1Sp, pp. 11–21, 2023.

N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1757-899X/546/5/052068.

F. Septiyana, M. S. Shihab, H. Kusumah, and D. Apriliasari, “Analysis of the effect of product quality, price perception and social value on purchase decisions for lampung tapis fabrics,” APTISI Trans. Manag., vol. 7, no. 1, pp. 54–59, 2023.

F.-J. Yang, “An Implementation of Naive Bayes Classifier,” in 2018 International Conference on Computational Science and Computational Intelligence (CSCI), 2018, pp. 301–306. doi: 10.1109/CSCI46756.2018.00065.

N. Wiwin, P. A. Sunarya, N. Azizah, and D. A. Saka, “A Model for Determine Upgrades for MSMEs using Analitical Hyrarcy Process,” ADI J. Recent Innov., vol. 5, no. 1Sp, pp. 20–32, 2023.

M. Lestari, “Penerapan Algoritma Klasifikasi Nearest Neighbor (K-Nn) Untuk Mendeteksi Penyakit Jantung,” 2014.

S. A. Yakan, “Analysis of development of artificial intelligence in the game industry,” Int. J. Cyber IT Serv. Manag., vol. 2, no. 2, pp. 111–116, 2022.

O. Putra Barus and T. Sanjaya, “Prediksi Tingkat Keberhasilan Pengobatan Kanker Menggunakan Imunoterapi Dengan Metode Naive Bayes,” vol. 5, no. 1, Jan. 2020, Accessed: Jan. 19, 2023. [Online]. Available: https://ejournal-medan.uph.edu/index.php/isd/article/view/406

U. Rahardja, Q. Aini, P. A. Sunarya, D. Manongga, and D. Julianingsih, “The Use of TensorFlow in Analyzing Air Quality Artificial Intelligence Predictions PM2. 5,” Aptisi Trans. Technopreneursh., vol. 4, no. 3, pp. 313–324, 2022.

K. Wabang, Oky Dwi Nurhayati, and Farikhin, “Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 5, pp. 872–876, Nov. 2022, doi: 10.29207/resti.v6i5.4498.

S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng, “Some Effective Techniques for Naive Bayes Text Classification,” IEEE Trans Knowl Data Eng, vol. 18, no. 11, pp. 1457–1466, 2006, doi: 10.1109/TKDE.2006.180.

B. Rawat and D. Maulidditya, “Entrepreneurship in Information Technology as a Method for Improving Student Creativity in the Digital Economy,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 32–37, 2022.

M. Sohail Arshad Associate Professor et al., “EVALUATION OF THE HOSPITAL CARE IN CARDIOVASCULAR DISEASE PATIENTS,” 2017. Accessed: Nov. 30, 2023. [Online]. Available: https://gjms.com.pk/index.php/journal/article/view/727

A. Groenewegen, F. H. Rutten, A. Mosterd, and A. W. Hoes, “Epidemiology of heart failure,” Eur J Heart Fail, vol. 22, no. 8, pp. 1342–1356, Aug. 2020, doi: https://doi.org/10.1002/ejhf.1858.

R. A. O. P. B. Stephanie, “Penerapan UCD dalam Aplikasi Tracking Kalori: OnTrack Solusi Kalori Seimbang,” Buletin Gemastik, vol. 1, no. 1, pp. 6–10, 2023, Accessed: Nov. 29, 2023. [Online]. Available: https://buletingemastik.id/index.php/bg/article/view/3/2

J. J. Pangaribuan and O. P. Barus, Extreme Learning Machine: Penerapan dan Aplikasi. Eureka Media Aksara, 2022.

R. Wu, W. Peters, and M. W. Morgan, “The next generation of clinical decision support: linking evidence to best practice,” J Healthc Inf Manag, vol. 16, no. 4, pp. 50–55, 2002, [Online]. Available: http://europepmc.org/abstract/MED/12365300

U. Rahardja, “Camera trap approaches using artificial intelligence and citizen science,” Int. Trans. Artif. Intell., vol. 1, no. 1, pp. 71–83, 2022.

D. Lowd and P. Domingos, “Naive Bayes Models for Probability Estimation,” in Proceedings of the 22nd International Conference on Machine Learning, in ICML ’05. New York, NY, USA: Association for Computing Machinery, 2005, pp. 529–536. doi: 10.1145/1102351.1102418.

S. G. Fitri, R. Selsi, Z. Rustam, and J. Pandelaki, “Naïve bayes classifier models for cerebral infarction classification,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1742-6596/1490/1/012019.

O. Putra Barus and A. Tehja, “Prediksi Kesembuhan Pasien Covid-19 Di Indonesia Melalui Terapi Menggunakan Metode Naïve Bayes,” Journal Information System Development (ISD), vol. 6, no. 2, pp. 59–66, Jul. 2021, Accessed: Jan. 19, 2023. [Online]. Available: https://ejournal-medan.uph.edu/index.php/isd/article/view/460/267

D. A. Omondiagbe, S. Veeramani, and A. S. Sidhu, “Machine Learning Classification Techniques for Breast Cancer Diagnosis,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2019. doi: 10.1088/1757-899X/495/1/012033.

S. H. A. Aini, Y. A. Sari, and A. Arwan, “Seleksi Fitur Information Gain untuk Klasifikasi Penyakit Jantung Menggunakan Kombinasi Metode K-Nearest Neighbor dan Naive Bayes,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 2546–2554, Feb. 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2346

Downloads

Published

2023-12-19

How to Cite

Barus, O. P., Lauwren, K., Pangaribuan, J. J., & Romindo. (2023). Implementation of the Naive Bayes Algorithm to Predict the Safety of Heart Failure Patients. IAIC International Conference Series, 4(1), 172–177. https://doi.org/10.34306/conferenceseries.v4i1.651