Comparative Analysis of the Performance of the Decision Tree and K-Nearest Neighbors Methods in Classifying Coffee Leaf Diseases
DOI:
https://doi.org/10.34306/conferenceseries.v4i1.649Keywords:
Coffee Leaf, Data Mining, Classification, Decision Tree, K-Nearest NeighborAbstract
This study aimed to develop and compare classification models utilizing Decision Tree and K-Nearest Neighbors (KNN) in the detection of diseases in coffee leaf images. The dataset comprises coffee leaf images categorized into four different disease types, namely Nodisease, Miner, Phoma, and Rust. To facilitate model training and testing, the dataset was divided into training and validation data using a cross-validation approach. Both the Decision Tree and KNN models underwent meticulous parameter tuning. The experimental results reveal that the Decision Tree model achieved an accuracy rate of 98.20% on the validation data, while the KNN model achieved an accuracy rate of 75.01%. Furthermore, the Decision Tree model exhibited an AUC of 0.9879, recall of 0.9820, precision of 0.9835, and an F1-score of 0.9819 on the validation data. Conversely, the KNN model achieved an AUC of 0.9465, recall of 0.7501, precision of 0.7569, and an F1-score of 0.7485. These findings suggest that the Decision Tree model surpasses the KNN model in accurately detecting coffee leaf diseases, as demonstrated by higher accuracy and other evaluation metrics. However, the relevance of the KNN model remains contingent on application requirements and modeling preferences. These outcomes may contribute to the development of automated systems for disease detection in coffee plants, ultimately promoting more sustainable agricultural practices.
References
E. T. Kembaren and M. Muchsin, “Pengelolaan Pasca Panen Kopi Arabika Gayo Aceh,” J. Visioner Strateg., vol. 10, no. 1, 2021.
A. S. Anwar, U. Rahardja, A. G. Prawiyogi, N. P. L. Santoso, and S. Maulana, “iLearning model approach in creating blockchain based higher education trust,” Int. J. Artif. Intell. Res, vol. 6, no. 1, 2022.
D. Irfansyah, M. Mustikasari, and A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 87–92, 2021.
F. Faiqotuzzulfa and S. A. Putra, “Virtual Reality’s Impacts on Learning Results in 5.0 Education: a Meta-Analysis,” Int. Trans. Educ. Technol., vol. 1, no. 1, pp. 10–18, 2022.
A. Purnamawati, W. Nugroho, D. Putri, and W. F. Hidayat, “Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVMdan KNN,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 212–215, 2020, [Online]. Available: https://doi.org/10.30743/infotekjar.v5i1.2934.
A. Fernanda, A. R. F. Geovanni, and M. Huda, “Application of artificial intelligence to the development of playing ability in the valorant game,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 22–31, 2022.
B. Wahyuningtyas, I. I. Tritoasmoro, and N. Ibrahim, “Identifikasi Penyakit Pada Daun Kopi Menggunakan Metode Local Binary Pattern Dan Random Forest ( Identification Of Disease In Coffee Leaves Using Local Binary Pattern And Random Forest Methods ),” e-Proceeding Eng., vol. 8, no. 6, pp. 2972–2980, 2022.
A. Hermawan, W. Sunaryo, and S. Hardhienata, “Optimal Solution for OCB Improvement Through Strengthening of Servant Leadership, Creativity, and Empowerment,” Aptisi Trans. Technopreneursh., vol. 5, no. 1Sp, pp. 11–21, 2023.
M. Odhiambo, “Coffee leaf diseases,” 2021. https://www.kaggle.com/datasets/badasstechie/coffee-leaf-diseases/data.
M. R. Anwar and S. Purnama, “Boarding house search information system database design,” Int. J. Cyber IT Serv. Manag., vol. 2, no. 1, pp. 70–81, 2022.
B. P. K. Bintoro, N. Lutfiani, and D. Julianingsih, “Analysis of the Effect of Service Quality on Company Reputation on Purchase Decisions for Professional Recruitment Services,” APTISI Trans. Manag., vol. 7, no. 1, pp. 35–41, 2023.
M. Hardini, R. A. Sunarjo, M. Asfi, M. H. R. Chakim, and Y. P. A. Sanjaya, “Predicting Air Quality Index using Ensemble Machine Learning,” ADI J. Recent Innov., vol. 5, no. 1Sp, pp. 78–86, 2023.
R. Suhendra, S. Suryadi, N. Husdayanti, A. Maulana, and T. Rizky, “Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification,” Heca J. Appl. Sci., vol. 1, no. 2, pp. 54–61, 2023, doi: 10.60084/hjas.v1i2.85.
U. Rahardja, “Blockchain Education: as a Challenge in the Academic Digitalization of Higher Education,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 62–69, 2022.
R. Windiawan and A. Suharso, “Identifikasi Penyakit pada Daun Kopi Menggunakan Metode Deep Learning VGG16,” Explor. IT! J. Keilmuan dan Apl. Tek. Inform., vol. 13, no. 2, pp. 43–50, 2021.
U. Rahardja, Q. Aini, P. A. Sunarya, D. Manongga, and D. Julianingsih, “The Use of TensorFlow in Analyzing Air Quality Artificial Intelligence Predictions PM2. 5,” Aptisi Trans. Technopreneursh., vol. 4, no. 3, pp. 313–324, 2022.
J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 1–6, 2023, doi: 10.52158/jacost.v4i1.484.
S. K. Wildah, A. Latif, A. Mustopa, S. Suharyanto, M. S. Maulana, and A. Sasongko, “Klasifikasi Penyakit Daun Kopi Menggunakan Kombinasi Haralick, Color Histogram dan Random Forest,” J. Sist. dan Teknol. Inf., vol. 11, no. 1, p. 35, 2023, doi: 10.26418/justin.v11i1.60985.
N. N. Azizah and T. Mariyanti, “Education and technology management policies and practices in madarasah,” Int. Trans. Educ. Technol., vol. 1, no. 1, pp. 29–34, 2022.
R. Suhendra, F. Arnia, R. Idroes, N. Earlia, and E. Suhartono, “A novel approach to multi-class atopic dermatitis disease severity scoring using multi-class SVM,” in 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 2019, pp. 35–39.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Suryadi, Murhaban, Rivansyah Suhendra
This work is licensed under a Creative Commons Attribution 4.0 International License.