Predictions using Support Vector Machine with Particle Swarm Optimization in Candidates Recipient of Program Keluarga Harapan

Authors

  • Arie Satia Dharma Institut Teknologi Del
  • Evi Rosalina Silaban Institut Teknologi Del
  • Hana Maria Siahaan Institut Teknologi Del

DOI:

https://doi.org/10.34306/conferenceseries.v4i1.639

Keywords:

Program Keluarga Harapan, Particle Swarm Optimization, Support Vector Machine, SVM, PSO

Abstract

Program Keluarga Harapan (PKH) is a conditional social assistance program as an effort to alleviate poverty which is allocated to poor vulnerable households. The determination of candidates for the Program Keluarga Harapan assistance recipients is still carried out in village meetings, so it takes quite a long time and there is potential for subjectivity in the assessment carried out by Village Government officials which can lead to differences of opinion between deliberation participants in assessing the eligibility of residents as PKH recipients. For this reason, this research will use an optimization method, namely Particle Swarm Optimization (PSO) to select the most optimal attribute out of 39 attributes. After that, a classification algorithm, namely the Support Vector Machine (SVM), was chosen to form a classification model for Candidates for Social Assistance for the Program Keluarga Harapan (PKH). The classification of Candidates for Social Assistance Recipients of the Program Keluarga Harapan (PKH) was carried out in 2 experiments, namely before and after optimization. Experiments before optimization give an accuracy value of 92.44%. While the Support Vector Machine accuracy value after optimization gives an accuracy value of 92.51%. Based on the experimental results, it can be concluded that the Particle Swarm Optimization method can increase the accuracy of the Support Vector Machine algorithm by 0.07%. And the best model is the Support Vector Machine after optimizing Particle Swarm Optimization by using the 17 most optimized attributes in determining class targets.

References

Lestari U, Targiono M. Sistem Pendukung Keputusan Klasifikasi Keluarga Miskin Menggunakan Metode Simple Additive Weighting (Saw) Sebagai Acuan Penerima Bantuan Dana Pemerintah (Studi Kasus: Pemerintah Desa Tamanmartani, Sleman). J TAM (Technology Accept Model. 2017;8(1).

M. A. A. Budi, M. G. L. Putra, and L. H. Atrinawati, “Improving Helpdesk Capability in Perum Peruri Through Service Catalog Management Based on ITIL V3,” Int. J. Cyber IT Serv. Manag., vol. 2, no. 2, pp. 117–126, 2022.

Ghahremani nahr J, Nozari H, Sadeghi ME. Artificial intelligence and Machine Learning for Real-world problems (A survey). Int J Innov Eng. 2021;1(3).

M. H. R. Chakim, M. Hatta, A. Himki, A. R. A. Zahra, and N. N. Azizah, “The Relationship Between Smart Cities and Smart Tourism: Using a Systematic Review,” ADI J. Recent Innov., vol. 5, no. 1Sp, pp. 33–44, 2023.

Abijono H, Santoso P, Anggreini NL. ALGORITMA SUPERVISED LEARNING DAN UNSUPERVISED LEARNING DALAM PENGOLAHAN DATA. J Teknol Terap G-Tech. 2021;4(2).

R. Rarmizi, I. Y. Nasaruddin, and N. Hidayah, “Analysis of the influence of corporate governance on the financial performance of Islamic banks in Indonesia 2016-2021,” APTISI Trans. Manag., vol. 7, no. 2, pp. 179–190, 2023.

Ngurah G, Susena E, Furqon MT, Wihandika RC. Optimasi Parameter Support Vector Machine (SVM) dengan Particle Swarm Optimization (PSO) Untuk Klasifikasi Pendonor Darah Dengan Dataset RFMTC. J Pengemb Teknol Inf dan Ilmu Komputer,. 2018;2(12).

R. D. Affandi, H. Pratiwi, and M. I. Sa’ad, “Application of the SMARTER Method in Determining the Whitening of Study Permits and Teacher Study Tasks,” Aptisi Trans. Technopreneursh., vol. 5, no. 2, pp. 205–215, 2023.

Musyaffa N, Rifai B. Model Support Vector Machine Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Liver. JITK (Jurnal Ilmu Pengetah Dan Teknol Komputer). 2018;3(2).

T. A. D. Lael and D. A. Pramudito, “Use of Data Mining for The Analysis of Consumer Purchase Patterns with The Fpgrowth Algorithm on Motor Spare Part Sales Transactions Data,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 2, pp. 128–136, 2023.

Freitas D, Lopes LG, Morgado-Dias F. Particle Swarm Optimisation: A historical review up to the current developments. Vol. 22, Entropy. 2020.

U. Rahardja, “Using Highchart to implement business intelligence on Attendance Assessment system based on YII Framework,” Int. Trans. Educ. Technol., vol. 1, no. 1, pp. 19–28, 2022.

Gad AG. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch Comput Methods Eng. 2022;29(5).

U. Rahardja, Q. Aini, D. Manongga, I. Sembiring, and I. D. Girinzio, “Implementation of Tensor Flow in Air Quality Monitoring Based on Artificial Intelligence,” Int. J. Artif. Intell. Res., vol. 6, no. 1, 2023.

Fajri M, Primajaya A. Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search. J Appl Informatics Comput. 2023;7(1).

Goel A, Srivastava SK. Role of kernel parameters in performance evaluation of SVM. In: Proceedings - 2016 2nd International Conference on Computational Intelligence and Communication Technology, CICT 2016. 2016.

S. Kosasi, U. Rahardja, I. D. A. E. Yuliani, R. Laipaka, B. Susilo, and H. Kikin, “IT Governance: Performance Assessment of Maturity Levels of Rural Banking Industry,” in 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, 2022, pp. 1–6.

Gerds TA, van de Wiel MA. Confidence scores for prediction models. Biometrical J. 2011;53(2).

A. Lubis, I. Iskandar, and M. M. L. W. Panjaitan, “Implementation of KNN Methods And GLCM Extraction For Classification Of Road Damage Level,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 1–7, 2022.

Berthon A, Han B, Niu G, Liu T, Sugiyama M. Confidence Scores Make Instance-dependent Label-noise Learning Possible. In: Proceedings of Machine Learning Research. 2021.

Putra MI. Sistem Rekomendasi Kelayakan Kredit Menggunakan Metode Random Forest pada BRI Kantor Cabang Pelaihari. J Tek Inform dan Sist Inf. 2019;13(1).

Riaddy, Aditya I, Sibaroni Y, Aditsania A. Ekstraksi Informasi pada Makalah Ilmiah dengan Pendekatan Supervised Learning. e-Proceeding Eng. 2019;3(1).

K. Kano and E. Dolan, “Data Compression Analysis of Multimedia Video on Demand and DEMAND TV Broadcast Systems on the Network,” Int. J. Cyber IT Serv. Manag., vol. 3, no. 1, pp. 48–53, 2023.

Achyani YE. Penerapan Metode Particle Swarm Optimization Pada Optimasi Prediksi Pemasaran Langsung. J Inform. 2018;5(1).

Fauziah, Tiro MA, Ruliana. Comparison of k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) Methods for Classification of Poverty Data in Papua. ARRUS J Math Appl Sci. 2022;2(2).

Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Comput. 2018;22(2).

Qiuyun T, Hongyan S, Hengwei G, Ping W. Improved Particle Swarm Optimization Algorithm for AGV Path Planning. IEEE Access. 2021;9.

Xie T, Yao J, Zhou Z. DA-based parameter optimization of combined kernel support vector machine for cancer diagnosis. Processes. 2019;7(5).

Chardin D, Gille C, Pourcher T, Humbert O, Barlaud M. Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies. BMC Bioinformatics. 2022;23(1).

Nurajijah N, Riana D. Algoritma Naïve Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah. J Teknol dan Sist Komput. 2019;7(2).

Downloads

Published

2023-12-19

How to Cite

Dharma, A. S., Silaban, E. R. ., & Siahaan, H. M. (2023). Predictions using Support Vector Machine with Particle Swarm Optimization in Candidates Recipient of Program Keluarga Harapan. IAIC International Conference Series, 4(1), 115–121. https://doi.org/10.34306/conferenceseries.v4i1.639