Classification of Coffee Leaf Diseases using the Convolutional Neural Network (CNN) EfficientNet Model
DOI:
https://doi.org/10.34306/conferenceseries.v4i1.627Keywords:
Identification, Coffee Leaf Disease, Convolutional Neural Network (CNN), EfficientNetAbstract
Coffee leaf disease is a problem that needs attention because it affects the quality and productivity of the coffee harvest and is detrimental to farmers. Therefore, a system is needed to identify types of coffee leaf diseases using artificial intelligence. There are four types of coffee leaf diseases, namely Miner leaf, Phoma leaf, Rust leaf, and Nodisease leaf. The research used the EfficientNet Architecture Convolutional Neural Network (CNN) method to detect types of disease on coffee leaves. This method was chosen because it is capable and reliable in processing digital images for pattern recognition. The dataset used is 1,464 images with dimensions of 2048 x 1024 pixels with RGB type which are divided into 1,264 training data and 400 testing data. Several architectures used in EfficientNet are EfficientNet B0, EfficientNet B1, EfficientNet B2, EfficientNet B3, EfficientNet B4. Parameters used are Lanczos resampling, Epoch 25, Learning Rate 0.0001, Loss Function Sparse Categorical Cross Entropy, Optimizer Adam. The results of training data testing, namely the CNN EfficientNet B1 Architecture Model method, got the best accuracy of 97% and a loss of 0.1328 and testing data testing got an accuracy of 0.97% and a loss of 0.1328. The architecture of the EfficientNet B1 model is better than other architectural models, namely VGG16, ResNet50, MobileNetv2, EfficientNet B0, EfficientNet B2, EfficientNet B3, EfficientNet B4, EfficientNet B5, EfficientNet B6, EfficientNet B7.
References
Y. Nurhanisah, “Produksi Kopi Indonesia 2017-2022,” Badan Pusat Statistik (BPS). Accessed: Nov. 04, 2023. [Online]. Available: https://indonesiabaik.id/infografis/produksi-kopi-indonesia-2017-2022
U. Rahardja, Q. Aini, P. A. Sunarya, D. Manongga, and D. Julianingsih, “The Use of TensorFlow in Analyzing Air Quality Artificial Intelligence Predictions PM2. 5,” Aptisi Trans. Technopreneursh., vol. 4, no. 3, pp. 313–324, 2022.
D. Novtahaning, H. A. Shah, and J. M. Kang, “Deep Learning Ensemble-Based Automated and High-Performing Recognition of Coffee Leaf Disease,” Agric., vol. 12, no. 11, 2022, doi: 10.3390/agriculture12111909.
F. Alfiana et al., “Apply the Search Engine Optimization (SEO) Method to determine Website Ranking on Search Engines,” Int. J. Cyber IT Serv. Manag., vol. 3, no. 1, pp. 65–73, 2023.
L. X. Boa Sorte, C. T. Ferraz, F. Fambrini, R. D. R. Goulart, and J. H. Saito, “Coffee leaf disease recognition based on deep learning and texture attributes,” Procedia Comput. Sci., vol. 159, pp. 135–144, 2019, doi: 10.1016/j.procs.2019.09.168.
L. Philip and T. Pradiani, “Influence Brand Experience, Viral Marketing and Brand Image to Brand Loyalty to Service Users Streaming Spotify in Indonesia,” ADI J. Recent Innov., vol. 5, no. 2, pp. 127–135, 2024.
D. Irfansyah et al., “Arsitektur Convolutional Neural Network ( CNN ) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” vol. 6, no. 2, pp. 87–92, 2021.
E. Nathanael and W. Sejati, “Effective Government Management of Flood Discharge in Drainage Channels using HEC-RAS 6.3. 1 Application,” APTISI Trans. Manag., vol. 7, no. 3, pp. 210–220, 2023.
M. I. Rosadi, M. Lutfi, M. I. Mas’ud, and I. L. Fuad, SMART FARM Penerapan Kecerdasan Buatan dan Teknologi Internet of Things (IoT) di Sektor Pertanian.
R. L. Putri, S. Hidayat, E. Wahyono, and L. Rahmawati, “Big Data and Strengthening MSMEs After the Covid-19 Pandemic (Development Studies on Batik MSMEs in East Java),” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 2, pp. 83–100, 2023.
M. I. Rosadi and M. Lutfi, “Identifikasi Jenis Penyakit Daun Jagung Menggunakan Deep Learning Pre-Trained Model,” J. Explor. IT!, vol. 13, no. 2, pp. 36–42, 2021, [Online]. Available: https://doi.org/10.35891/explorit
O. Jayanagara and C. Lukita, “Evidence from SMA Students’ Performance on the Impact of Physics Education Technology (PhET) Simulations,” Int. Trans. Educ. Technol., vol. 1, no. 2, pp. 105–110, 2023.
G. M. Esgario, P. B. C. De Castro, L. M. Tassis, and R. A. Krohling, “An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning,” vol. 9, pp. 38–47, 2022, doi: 10.1016/j.inpa.2021.01.004.
L. K. Choi, K. B. Rii, and H. W. Park, “K-Means and J48 Algorithms to Categorize Student Research Abstracts,” Int. J. Cyber IT Serv. Manag., vol. 3, no. 1, pp. 61–64, 2023.
U. Rahardja, I. D. Hapsari, P. O. H. Putra, and A. N. Hidayanto, “Technological readiness and its impact on mobile payment usage: A case study of go-pay,” Cogent Eng., vol. 10, no. 1, p. 2171566, 2023.
E. B. Paulos, “Detection and Classification of Coffee Leaf Disease using Deep Learning,” pp. 1–6, 2022.
S. K. Wildah, A. Latif, A. Mustopa, and M. S. Maulana, “Klasifikasi Penyakit Daun Kopi Menggunakan Kombinasi Haralick , Color Histogram dan Random Forest Classification of Coffee Leaf Disease Using a Combination of Haralick , Color Histogram and Random Forest,” vol. 11, no. 1, 2023, doi: 10.26418/justin.v11i1.60985.
N. F. Hasan, “Deteksi dan Klasifikasi Penyakit Pada Daun Kopi Menggunakan Yolov7,” vol. 12, no. Dl, pp. 30–35, 2023.
Q. Aini, I. Sembiring, A. Setiawan, I. Setiawan, and U. Rahardja, “Perceived Accuracy and User Behavior: Exploring the Impact of AI-Based Air Quality Detection Application (AIKU),” Indones. J. Appl. Res., vol. 4, no. 3, pp. 209–218, 2023.
T. S. Prihartini and P. N. Andono, “Deteksi Tepi Dengan Metode Laplacian of Gaussian Pada Citra Daun Tanaman Kopi,” pp. 1–5, 2017, [Online]. Available: http://eprints.dinus.ac.id/15312/1/jurnal_15354.pdf
J. G. M. Esgario, R. A. Krohling, and J. A. Ventura, “Deep learning for classification and severity estimation of coffee leaf biotic stress,” Comput. Electron. Agric., vol. 169, no. December 2019, 2020, doi: 10.1016/j.compag.2019.105162.
A. Sabrina, “Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” vol. 9, no. 3, pp. 1919–1927, 2022.
R. Yang and Y. Yu, “Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis,” Front. Oncol., vol. 11, no. March, pp. 1–9, 2021, doi: 10.3389/fonc.2021.638182.
A. S. Anwar, U. Rahardja, A. G. Prawiyogi, N. P. L. Santoso, and S. Maulana, “iLearning model approach in creating blockchain based higher education trust,” Int. J. Artif. Intell. Res, vol. 6, no. 1, 2022.
R. Windiawan and A. Suharso, “Identifikasi Penyakit pada Daun Kopi Menggunakan Metode Deep Learning,” vol. 5, no. 36, pp. 9–16, 2021.
B. Wahyuningtyas, I. I. Tritoasmoro, and N. Ibrahim, “Identifikasi Penyakit Pada Daun Kopi Menggunakan Metode Local Binary Pattern Dan Random Forest ( Identification Of Disease In Coffee Leaves Using Local Binary Pattern And Random Forest Methods ),” e-Proceeding Eng., vol. 8, no. 6, pp. 2972–2980, 2022.
S. Suprihanto, I. Awaludin, M. Fadhil, and M. A. Z. Zulfikor, “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” J. Inform., vol. 9, no. 2, pp. 116–122, 2022, doi: 10.31294/inf.v9i1.13049.
A. I. Saputra, I. Weni, and U. Khaira, “Implementasi Metode Convolutional Neural Network Untuk Deteksi Penyakit Pada Tanaman Kopi Arabika Melalui Citra Daun Berbasis Android,” vol. 4, no. 1, pp. 41–51, 2024.
V. Kakani, V. H. Nguyen, B. P. Kumar, H. Kim, and V. R. Pasupuleti, “A critical review on computer vision and artificial intelligence in food industry,” J. Agric. Food Res., vol. 2, no. November 2019, p. 100033, 2020, doi: 10.1016/j.jafr.2020.100033.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Imron Rosadi, Lukman Hakim, M. Faishol A.
This work is licensed under a Creative Commons Attribution 4.0 International License.