Sentiment Analysis of Bjorka Hacker Using the Naive Bayes and C.45 Algorithms

Authors

  • Wowon Priatna Universitas Bhayangakara Jakarta Raya
  • Eka Nur A’ini Bhayangkara University of Jakarta
  • Joni Warta Bhayangkara University of Jakarta
  • Agus Hidayat Bhayangkara University of Jakarta
  • Tyastuti Sri Lestari Bhayangkara University of Jakarta
  • Rasim Bhayangkara University of Jakarta

DOI:

https://doi.org/10.34306/conferenceseries.v4i1.614

Keywords:

BPJS, Hacker Bjorka, Classification, Sentiment Analysis, C.45, Naive Bayes

Abstract

 In 2023, Indonesia was again devastated by a hacker known as Bjorka. Bjorka did not act just once or twice; every time, Bjorka made the entire Indonesian population proud. The 19 million BPJS Employment data belonging to the Indonesian people that Bjorka hacked is the BPJS Employment data belonging to the Indonesian people that Bjorka hacked. Since the release of the Bjorka story, there has been a surge in the number of people criticizing it on social media, particularly Facebook, so the criticism or opinions can be used to conduct sentiment analysis. Based on this, developing a method that can automatically classify beliefs into positive and negative categories through sentiment analysis is necessary. The sentiment analysis process begins with data preprocessing, followed by keyword analysis using the TF-IDF method, algorithm development, and analysis of classification results. The data classification methods used in this study are Naive Bayes and C4.5. The data will be analyzed using text mining and classified using the Naive Bayes and C4.5 algorithms. Based on the results of the tests, the best classification was achieved by Nave Bayes, with a score of 70 percent for the C4.5 algorithm and 68 percent for the C4.5 algorithm. The Nave Bayes algorithm can predict up to 70% data transmission rates for both positive and negative signals.

References

M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5, pp. 25–29, 2017, doi: 10.5120/ijca2017915758.

A. Eiji and S. Mehta, “Simulation-Based 5G Femtocell Network System Performance Analysis,” Int. J. Cyber IT Serv. Manag., vol. 3, no. 1, pp. 74–78, 2023.

Zulfikar Hardiansyah, “Rentetan Aksi Hacker Bjorka dalam Kasus Kebocoran Data di Indonesia Sebulan Terakhir,” https://tekno.kompas.com/, 2022.

M. C. Saputra and E. Andajani, “Analysis of Factors Influencing Intention to Adopt Battery Electric Vehicle in Indonesia,” ADI J. Recent Innov., vol. 5, no. 2, pp. 100–109, 2024.

N. M. A. J. Astari, “Analisis Sentimen pada Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” https://repo.undiksha.ac.id/, 2021.

O. A. D. Wulandari and D. Apriani, “Sustainable Institutional Entrepreneurial Culture and Innovation For Economic Growth,” APTISI Trans. Manag., vol. 7, no. 3, pp. 221–230, 2023.

R. Sholehurrohman and I. Sabda Ilman, “Analisis Sentimen Tweet Kasus Kebocoran Data Penggunaan Facebook Oleh Cambrigde Analytica,” J. Pepadun, vol. 3, no. 1, pp. 140–147, 2022, doi: 10.23960/pepadun.v3i1.108.

A. W. Kusuma, Y. Jumaryadi, and A. Fitriani, “Examining the Joint Effects of Air Quality, Socioeconomic Factors on Indonesian Health,” Aptisi Trans. Technopreneursh., vol. 5, no. 2sp, pp. 186–195, 2023.

S. Andayani, “Formation of clusters in Knowledge Discovery in Databases by Algorithm K-Means,” SEMNAS Mat. dan Pendidik. Mat. 2007, 2007.

Z. Lubis, M. Zarlis, and M. R. Aulia, “Performance Analysis of Oil Palm Companies Based on Barcode System through Fit Viability Approach: Long Work as A Moderator Variable,” Aptisi Trans. Technopreneursh., vol. 5, no. 1, pp. 40–52, 2023.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

L. K. Choi, P. A. Sunarya, and M. Fakhrezzy, “Blockchain technology as authenticated system for smart universities,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 57–61, 2022.

A. Reza Satria and S. Adinugroho, “Analisis Sentimen Ulasan Aplikasi Mobile menggunakan Algoritma Gabungan Naive Bayes dan C4.5 berbasis Normalisasi Kata Levenshtein Distance,” vol. 4, no. 11, pp. 4154–4163, 2020.

I. D. Girinzio, A. Ramadan, D. B. Saputra, and G. Mustika, “Improve Critical Thinking Students In Indonesia For New Learning Management System,” Int. Trans. Educ. Technol., vol. 1, no. 2, pp. 111–121, 2023.

R. C. Chen, C. Dewi, S. W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00327-4.

D. S. S. Wuisan, R. A. Sunardjo, Q. Aini, N. A. Yusuf, and U. Rahardja, “Integrating Artificial Intelligence in Human Resource Management: A SmartPLS Approach for Entrepreneurial Success,” Aptisi Trans. Technopreneursh., vol. 5, no. 3, pp. 334–345, 2023.

P. Sedgwick, “How to read a receiver operating characteristic curve,” BMJ, vol. 350, no. May, 2015, doi: 10.1136/bmj.h2464.

C. Indonesia, “Baca artikel CNN Indonesia ‘10 Kasus Kebocoran Data 2022: Bjorka Dominan, Ramai-ramai Bantah,’” https://www.cnnindonesia.com/, 2022.

C. Indonesia, “BPJS Ketenagakerjaan Bantah Data Dibobol Bjorka,” https://www.cnnindonesia.com/, 2023.

U. Rahardja, C. T. Sigalingging, P. O. H. Putra, A. Nizar Hidayanto, and K. Phusavat, “The impact of mobile payment application design and performance attributes on consumer emotions and continuance intention,” SAGE Open, vol. 13, no. 1, p. 21582440231151920, 2023.

S. J. Kuryanti, S. N. Khasanah, S. Nusa, and M. Jakarta, “Comparison of Naive Bayes Algorithm, C4.5 and Random Forest for Service Classification Ojek Online,” J. Publ. Informatics Eng. Res., vol. 3, no. 2, 2019.

S. Pranata, K. Hadi, M. H. R. Chakim, Y. Shino, and I. N. Hikam, “Business Relationship in Business Process Management and Management with the Literature Review Method,” ADI J. Recent Innov., vol. 5, no. 1Sp, pp. 45–53, 2023.

B. Rawat, A. S. Bist, U. Rahardja, E. P. Harahap, and R. A. D. Septian, “Novel Framework to Define Extended & Mixed Reality for Online Learning,” in 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, 2022, pp. 1–4.

D. A. H. D. Larasati and T. Sutrisno, “Tourism Site Recommendation in Jakarta Using Decision Tree Method Based on Web Review,” SSRN Electron. J., 2018, doi: 10.2139/ssrn.3268964.

A. Lubis, I. Iskandar, and M. M. L. W. Panjaitan, “Implementation of KNN Methods And GLCM Extraction For Classification Of Road Damage Level,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 1–7, 2022.

T. R. Shultz and S. E. Fahlman, Encyclopedia of Machine Learning and Data Mining. 2017.

A. Williams and C. S. Bangun, “Artificial Intelligence System Framework in Improving The Competence of Indonesian Human Resources,” Int. J. Cyber IT Serv. Manag., vol. 2, no. 1, pp. 82–87, 2022.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2789–2797, 2019.

Adhitya Karel Maulaya and Junadhi, “Analisis Sentimen Menggunakan Support Vector Machine Masyarakat Indonesia Di Twitter Terkait Bjorka,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 495–500, 2022, doi: 10.37859/coscitech.v3i3.4358.

M. Annas and S. N. Wahab, “Data Mining Methods: K-Means Clustering Algorithms,” Int. J. Cyber IT Serv. Manag., vol. 3, no. 1, pp. 40–47, 2023.

Downloads

Published

2023-12-19

How to Cite

Priatna, W., A’ini, E. N. ., Warta, J. ., Agus Hidayat, Lestari, T. S. ., & Rasim. (2023). Sentiment Analysis of Bjorka Hacker Using the Naive Bayes and C.45 Algorithms. IAIC International Conference Series, 4(1), 79–87. https://doi.org/10.34306/conferenceseries.v4i1.614